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Abstract—The quasisteady method of analysis has been utilized to determine the thaw or frost depth
below heated or chilled insulated structures. Specifically, the method is applied to buried circular pipes,
infinite strips and circular discs. For the case when the ground temperature is different from the phase
change temperature, the solution is obtained by numerical integration of a quadrature. For the case when
the ground temperature approaches the phase change temperature closed form solutions are obtained.
The results presented in this paper should find use in the engineering design of structures in the colder

regions of the world.

NOMENCLATURE

x,y,z, the rectangular coordinate system
Xg,¥0,20, variables defining moving

L,

boundary;
time;

P,P.Q, points on axis (x > 0, y = z = 0);

T,,
T,
T,,
T,
T,
T,
S,
St
So.

Cy.

K,

temperature (thawed zone);

temperature (frozen zone);

temperature (heated or chilled surface);
temperature (insulation surface);

initial ground temperature;

phase change temperature;

surface of the heated areas;

surface of the outside of the insulation;
moving surface separating the thawed and
frozen zone;

volumetric heat capacity (thawed zone):
volumetric heat capacity (frozen zone);
thermal conductivity (thawed zone);
enhanced thermal conductivity (including
convection);

thermal conductivity (frozen zone);
permeability of the ground;

latent heat (volumetric) of thawed zone;
outward normal ;

characteristic length of the porous
enclosure;

depth evaluated at point P;

depth evaluated at point Q;

depth ratio;

X evaluated at P;

X evaluated at Q;

radius of thaw or frost for a pipe buried in
an infinite region;

temperature distribution function;
derivative of F( ) with respect to {;

Ste,

o,
a,
UB
G(),

C(T,—Ty)
Stefan’s number, 41( P ;
1

K,
Darcy number, 7; ;

T 3
Rayleigh number, (Tr 7:0)1 ;

Tyav
depth of burial of circular pipe;
thickness of insulation;
radius of buried pipe or of circular tank ;
half width of strip;
acceleration due to gravity;
a known function defining relationship
between T, and Tp;

1,,1,.1;, time factors for buried pipe,

strip and circular tank, respectively.

Greek symbols

111

¢
v,
0,,

dummy variable for X ;

Laplacian;

ratio of thermal conductivity of insulation
to thermal conductivity of thawed soil ;
ratio of depth of burial of pipe to its radius;
insulation thickness ratio (buried circular
pipe);

insulation thickness ratio (infinite strip);
insulation thickness ratio (circular base);
thermal diffusivity ;

kinematic viscosity ;

infinitesimal quantity;

a functional relationship.

INTRODUCTION

THE sTUDY of the thermal regime in the ground, of

heated or chilled structures,

is of considerable

importance in the colder regions of the world. In
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such areas, the prediction of the extent of thawing or
freezing induced by heated or chilled structures is
relevant in engineering design and logistics. Specifi-
cally, the effects resulting from the erection of
buildings; stripping of surface vegetation; con-
struction of tank farms, buried water and sewer
pipes, oil and gas pipelines, are of prime importance.
Engineering designs are usually related to the
determination of insulation requirement and em-
placement of backfills as measures to minimize either
thaw settlement or frost heave.

The work of Lachenbruch is relevant with respect
to the study of the thermal regime below heated
buildings [1] and around buried warm pipeline in
permafrost [2]. Significant progress in numerical
modelling of the thermal regime of buried pipes
using finite element or variational methods have
been made to date [3,4]. However, such procedures
are usually warranted only when the thermal
configuration is complex. For preliminary engineer-
ing designs approximate methods for predicting the
thermal regime may be effectively utilized. One such
approximate method is the so called “quasisteady
method™ which is generally valid for cases where the
latent heat of fusion is very large compared with the
heat capacities [5]. Carslaw and Jaeger [6] have
derived an approximate closed form quasisteady
solution for thawing and freezing around a cylinder
in an infinite domain. The same technique is used by
Porkhayev [7] for estimating thaw depths below
heated foundations. A good discussion relating to
the quasisteady technique is given by Tsytovich [8].

In this paper, the quasisteady method has been
applied to the problem of thawing or freezing below
heated or chilled insulated structures, respectively.
Also, some new closed form solutions for some
practically useful geometries have been derived.
These results should be of direct use in the
engineering designs of the Arctic, Sub-Arctic and
other colder regions of the world.

THE QUASISTEADY APPROACH

When moist ground thaws or freezes, a substantial
portion of the heat is exchanged in effecting a phase
change of the moisture in the ground. For soils with
sufficient water content, the interface between the
frozen and unfrozen zones usually moves very
slowly. Consequently, the thermal regime at any
given instant can be regarded as nearly steady. Thus,
the transient nature of the process may be regarded
as a continuous transition from one steady state to
another [6--8].

The main requirement for the application of the
quasisteady method of analysis are:

(a) The interface between the thawed and frozen
zones of the moist ground is an isothermal surface of
a steady temperature field.

(b) In the thawed and frozen zones, the tempera-
ture fields are described by the equations of steady
state temperature field with the zone interface
unsteady.

In this paper, the problem of thawing of frozen
ground due to a heated structure is discussed.
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However, the results are applicable to the converse
problem. With reference to Fig. 1, S, is the surface
on which a temperature is prescribed, corresponding
to the boundary of the heated or chilled structure.
§,, is the surface of the thermal insulation and S, is
the isothermal moving surface representing the
moving interface between the thawed and frozen
zones. V is the zone occupied by the thermal
insulation. V| is the thawed zone and V, is the frozen
zone of the half-space.

The formal problem of thawing or freezing of the
half-space based on heat conduction can be stated as
follows:

The subscripts 1 and 2 refer to the thawed and
frozen states, respectively. The temperature at a
point M(x,y,z) (see Fig. 1) at a given time t(t = 0) is
denoted by T'(x.v.z; 1)

(a) For the thawed zone,

C, oT,
VT =L L (1)
K, ot
For the frozen zone,
C, 0T
VT, = 22 ()
K, ¢t

where

+5 s
ax? o ay? oz

C, and C, are the volumetric heat capacities and
K, and K, are the thermal conductivities in the
thawed and frozen zones, respectively.

(b) Initial condition
Lix,vz;t=0)= T, (3)
T;; is the initially uniform ground temperature.

(c) Fixed boundary conditions

Tix=0yz:1)=T; 4)
at the ground surface
Tixpz:0 =Ty (5)

on the surface S,

(d) Moving boundary conditions (Cauchy con-
ditions)

Ty (X0 ¥0:205 1) = Ta(Xo, ¥0, 203 1) = Ty (6)

Points x4, vy, zo locate the isothermal moving
surface §, corresponding to the phase change
temperature T;.

Also, on the moving surface S,

) )
kT B 90 (7a)
on on dr
where ¢(xq,yg.20) = 0, locates the isothermal mov-
ing surface, n is the outward normal on a given point
on S, and d¢/dr is evaluated along the normal. L, is
the volumetric latent heat.

HM.T, 231 - H

The temperature at a given point on the surface S,
is related to the fixed temperature T, prescribed on
8., viz. T, = G(T,) where G( ) is a known function.
This relationship can be established by equating the
heat flow through the insulation to the heat flow into
the thawed ground at the given point.

The “quasisteady assumption™ requires that the
moving boundary progresses very slowly as com-
pared to the heat-conduction process in the thawed
and frozen zones. This approximation is valid when
the latent heat of the ground is large, viz. for a
ground with considerable moisture. It is then
reasonable to expect the approximation to be
valid for situations when the Stefan’s number,
C (T, ~T,)/L,, is small (Stefan’s number. Ste, is the
ratio of the sensible heat to the latent heat).

Since steady state conditions can be assumed in
the thawed or frozen zones in a ground when Ste « |
the temperature distribution in the thawed zone can
be expressed as

T (x,y,2) = A, + B, F(x.v.2) (8a)
Jsing potential theory [1,6], the distribution for
steady state thermal conditions, F(x,y,z). can be
determined for heat conduction in a homogeneous
half space, for several configurations of the surface
S,

Using the boundary conditions, equations (5) and
(6), the constants 4; and B, can be evaluated.
Consequently,

T (x,y.z)— Tg

Fix, "‘.‘,.:) - E(Xo- .‘:O‘EEL)

{8b)

1 — FlX. vo. 20}

=T,

Also, by definition F(S;) = 1.
Similarly, the temperature distribution in the
frozen region can be written as

To(x,v,2) = Ay + B> F(x,1.7) (9a)
where 4, and B, are constants.

Using boundary conditions {6) and the condition
F(x - o, y - o, z - o) =0, the temperature dis-
tribution can be written as:

Ty (x,v,z2)—T; I et
Bt i AP [N el A (9b)
’T(i - T;)

In many design problems the maximum extent of
thaw or frost depth is required. For the specific
geometries considered in this paper, it is assumed
that the maximum thaw or frost occurs along the
plane or axis of symmetry of the temperature field. 1t
must be understood, however, that equation (7a) can
be specialized for any direction. With reference to
Fig. 1, simplification of the equation (9b) along the
plane of symmetry (x > 0,y = 0,z) or along the axis
of symmetry (x > 0, y = z = 0), i.e. for two and three
dimensional problems, respectively, gives

T,

ox

Lo (7b)

2

X
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where
0Ty _ A= Flx s
T, 1—-F(xg)
and
Tx)—-T, F(x
i( 0 =1 (\), (gc)
T, — T, F(xy)

It is also assumed that the insulation thickness is
small compared to a characteristic length and
uniform around or along the heating surface, so that
within the insulation steady state conditions apply.
Integrating equation (7b) with the aid of equations
(8¢) and (9¢c), the following expression can be
obtained.

K= Toh “ =T
rsl v ) -T,
FO)~—1 d¢
A J 2 (10)
| (T){P(U“l} F(¢)
qiip | F()
where
X _ Ky(T.—-T;
x=2 g1y = 2= lo)
Fo K (T(X)—Ty)

and r, is a characteristic length.

Xp and X, can be interpreted to mean X at point
P and X at point Q, respectively. When the ground
temperature Ty, approaches T; such that T,— T, =7
(infinitesimal quantity), F({) can be still defined for
the boundary valve problem for steady state con-
ditions. However, if T, = T, the boundary (x =0,
y,z) has no effect on the temperature distribution in
the thawed zone.

When the ground temperature approaches T,
q(T,)—0 and equation (10) simplifies to:
Ki@p=Ton

raL,
_ f\ T-T, [FIO-1
i =T | FE)

In this paper, equation (11) has been integrated to
give closed-form solutions for some practically useful
geometries, while equation (10) is evaluated by a
numerical integration provided F({) is known. For
the case when T, — T, approaches ,

"di} (11

T T,

- » K, —1| |,
Toq 2 AL

CX g, [CA N N

leading to equation (I1). Also, if T, = T, the shape
function F({) may have to be redefined, since the
ground surface has no influence on the thaw bulb.

ASSUMPTIONS AND LIMITATIONS

OF THE QUASISTEADY APPROACH
The prediction of the extent of thawing or freezing
beneath heated or chilled structures is usually
required in soils with moderate to high moisture
content. Soils with low moisture content do not pose
problems either with respect to thaw settlement or
frost heave. It is therefore reasonable to obtain

solutions for the situations when the Stefan number.
Ste, is very small (« 1), The thaw-front would move
slowly, and the transient problem can be regarded as
a smooth transition from one steady state to the
next.

With regard to the use of the shape-factors
F(x,y,z) in the quasisteady formulation there are
two distinct considerations. Firstly when T, # T,
there is a flow of heat in the frozen zone, ic. the
surface (x =0, y.z) influences the temperature field
in the frozen zone and hence the shape of the thaw-
front. This is valid even when T,—T, is an
infinitesimal quantity. &. However, when T, is exactly
equal to T, there is no heat flow in the frozen zone
and the shape of the thaw-front is determined by the
surfaice S;. This exception in assuming F(x,y,z2)
should be considered for every geometry of the
surface, S,.

Other assumptions that have been made in the
formulation of the quasisteady approach are as
follows:

(a) The thickness of insulation is assumed to be
small relative to the characteristic length in the
problem, so that almost steady state conditions
inside the insulation exist.

(b) The average surface temperature is equal to
the average ground temperature.

(c) The temperature field F(x,1.z) is assumed to
have an axis of symmetry (x > 0, v = = = 0) for three
dimensional problems. or a plane of symmetry
(x > 0,y =0, z) for two dimensional problems.

(d) The geothermal gradient is defined as the
change in the temperature of the earth with depth
and is usually expressed in degrees per unit depth.
The geothermal heat flux, which is effectively the
product of the geothermal gradient and the corre-
sponding thermal conductivity, provides the basal
boundary condition for the thermal calculations
related to the ground temperature regime, especially
in thermally sensitive regions of the world such as
discontinuous and continuous permafrost areas. In
the present paper, the geothermal heat fux is
neglected.

TWO DIMENSIONAL ANALYSIS
Buried circular pipe

A circular pipe of radius r; is buried at a depth of
ho below the ground surface. If s is the thickness of
insulation around the pipe, the external radius of the
insulated pipe is ro = r;+s.

With reference to Fig. 2(a), the steady state
temperature distribution can be expressed by the
Forchheimer equation, [ 7],

| .}:2 + [7.\‘ + (g —rg)t?)?
_ ‘,2+ .\,__(hl‘rl)l 2
T(x,y) = Tp e L o o) ,]

: 2 1.2
21n%!7°+{<17f?> -1} }
(Fo N\ J

= T,F(x. 1)

5

(12a)

(12b)



Thermal analysis of insulated structures 1is

Te=PIPE TEMPERATURE
Ts = SURFACE TEMPERATURE
Te = GROUND TEMPERATURE
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F1G. 3. Depth ratio vs time factor I, (buried insulated pipe).
For the plane of symmetry (x:y = 0,z), the equation  where
simplifies to Cox . R 5 < ho
- 2 =5 Up=_— ==L j= o
C+{u _} ) ro K, ro Fo

n

{—(u?—

Tx,y=0=Tp - — ;
o y=0)=T In[pe+ (i — 1)}#]

=TFO  (13)

K and K, are the thermal conductivities of the

insulation and thawed ground, respectively. For the
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specific case then T; = T,, the temperature distri-
bution would be concentric about the pipe centre
since the ground surface has no influence on the
thaw-front. When the thaw-front touches the ground
surface, the solution becomes invalid.

However, for T, < T, the shape factor F({),
equation (13}, can be assumed in the analysis.

By equating the heat flux per unit area going
through the insulation to that going into the thawed
zone at the point P,

TN
R =)
TP(X)— ) O[F(X)~1]

Where ,

Fixp =y s (152)
Hp) —,u +}‘In{;¢+{# i 2}
Ip=p-+1 (15b)

The quadrature for the condition T; < T, can be
obtained by using equations {13}, {14) and {10}

R. SesHapri and A. V. G. KRISHNAYYA

Diameter of the pipe is 1.067m (42in); thickness
of styrofoam insulation is 5.08 x [07?m {2in); depth
of burial of pipe is 1.60m (5.25ft): temperature of
chilled gas is —9.44°C ({I15F}; average ground
temperature 0°C {32°F) for case 1 and (.56 C (33 F)
for case 2: thermal conductivity of insulation is
294 x 1072 W/m K (0.017Btu/h ' F): thermal con-
ductivities for a frozen and unfrozen ground and
ZIBW/m K {(125Biw/h#t"F)y and 1.36W/m K
{0.90 Btu/h ft “F), respectively. The latent heat for wet
ground, L,, is 2.22 x 10* J/m*® (5950.0 Btu/ft3). When
the pipe is buried at large depths, the influence of the
ground surface is negligible and the isotherms would
be circular and symmetric about the pipe axis, For
the pipe with insulation

/R 2

R' b4 R‘\
=25 (%)= (%)
o/ o, \Fo
21 (RN
1
(}L Fo, )

+1

4

[
Inf - —1. (18
n(]—(i) (18a)

X +{p?— 1)1
1 X— (=17 (X2 = D[+ (2 —1)12
| ) In( )F'(); (u - (XP-pi-1) [uli; "y
K(Tp— Ty e - 13 In[p+(p? - 1" 2t -1 (a6
Bl 0, (F(X)—1] _Infprie =) 1Y
L—q(Xp) nX““‘ —1i?
X~ 2}* 2
When the ground temperature T,; — T, equation (16) can be integrated in closed form to give:
K (Tp—Ty)t 1—p? X 4 X +1332
KT T L...,._‘LJH(M _Q_ﬁ) coth"( e m)—(’”‘ V' coth [t 1= 117" 2%
raly 3 BAURES Y FTRES DL u—1
e
{ l ‘f s ‘X 2 + 1
-2
. (H“H | (e =1y =1/
e i)
X X + 1312 w12
NEYPLISE | e—_ ~»,~;coth"‘< ¢ Q)—(ﬂ ) coth“"(i——>
(2 1)t (u* — 1) p—1 -1,
[ X Y SETR
N1y ) T -1 ’m<7”§)
- n{p+(p* — 1Y — i
L - LA CF(X )~1%
tiin (u Fl) J 2% — 1)1 { 0 (Xe |
1,
XSl , '
X { {_Fg.iii_,‘,.._,,___%sz_ DiXy—{u+ 1)}J. (17
Also . . . .
1 When there is no insulation on the pipe, the result
in (T:(;) is given by Carslaw and Jaeger [6], viz.
e R\? [RY\ [RY .
P _ =22 m{=)-{=) +1. 8k
can be defined as “insulation effectiveness ratio” and \Fo / o/ o/
. 1\,(;_ A comparison between results (17) and (18b) is
roly plotted in Fig. 3.

is the time factor.

The resuits equations {16} and (17} have use in the
design of buried water, sewer, oil and gas pipes.

The progress of the frost front with time is plotted
in Fig. 3, for a buried pipe with the following data:

An infinitely long strip

Consider an infinitely long strip of width 2a.
Below the strip is an insulation of thickness 1. With
reference to Fig. 2, the steady state temperature
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distribution for a half space in this case is given by For T; < T, the quadrature becomes
T, a+y a— K(T,=Ty)x = [*e 8,/8, F'(Xp)
T{x,y})= i <arctan ! +arctan ——X> (19a) ;(%L)z — 1+ —1/—1~—(—P)
7 x X a‘L, 2 Jo F(X)—-1
T 2 1
= — F(x,y). (19b) %1 — " arctan <A>} (X2+1)-dX
n n X
. e —. (23)
Defining 1
i} 1=q(X){1 =
rel S S 0 K %arctan<i>
s = a ’ i a, 1 = Kl b X

the temperature distribution for the plane of sym-

metry (x,y =0, z) is

27, 1
T({) = — arctan (—)
n ¢

The heat flux balance at a point such as P is given by
L-T,__, 0 F&Xp
To(X)-T, 8, F(X)-1

(20)

21

The solution for g — 0, viz. T; - T,

K(Tp— Tyt

aZLIVW
=<E+5—1><ﬁ+X )—<X~3+X >arctan<~1—>
276/\3 7¢) \3 ¢ X,

2
-?Q—%lnw—%ln(l+Xé—). (22)

Consider as an example a strip of half-width equal
to 3.05m (10ft) which is at a temperature of 15.55°C
(60°F). The bottom of the strip is insulated with
styrofoam (K=294x10"2 W/mK or 0017
Btu/h ft °F). The ground has the following thermal
properties: K, =1.56W/mK  (0.900 Btu/hft “F),
K,=216 W/mK (1,250 Btu/h ft °F), L=
1.34 x 108 J/m® (3,600 Btu/ft3). The rate of thaw
is plotted in Figs. 4 and 5 for different insulation
thicknesses and ground temperatures. Figure 5 is a
plot of the depth ratio X against the time factor

( K,(TP~T0)1>
L = ~—ie
a‘L,

for different values of 4, =0,/6,. An increase in 4,
indicates either an increase in insulation thickness of
a decrease in insulation thermal conductivity. 4, is
the “insulation effectiveness ratio” for this case.
Equations (22) and (23) can be applied to designs
pertaining to strip footings or long rectangular areas.
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THREE DIMENSIONAL ANALYSIS
Tank with a circular base
Consider a tank with a circular bottom with a

radius, r,. and with an insulation of thickness ¢ and
thermal conductivity K.

X No o . s K

Let{=-.X=-",0,=~-,0,= .

o o Fo Ky
The expression for steady state temperature along
the centerline can be written as [1].

G

FO)=1— 5o (24)
(g2 + l)l 2
Equating heat flux at a point such as P.
T, — T, 5, (XZ2+1)172
Ty, (b (25)
T(X)=T, 0, X

Equations (24). (25) and (10) can be combined to
give the quadrature for T; < T, as in earlier cases.

For the case when T, — 0, the closed form result
can be written as:

Ki(T,— Tyt

2
roly

X3 xg) 3, ,
={F+-F P IX,[(XE+1)]72
(2 4/+401[Q[(‘~’ ]

+HXp(XZ+ 1V 2 +In(X o+ [X5+1172)}]. (26)

The analysis presented in this section has use in the
design of tank pads. For a circular tank of radius
10ft and the same thermal data as for the previous
cases, the results are plotted in Figs. 6 and 7.

CONVECTIVE HEAT TRANSFER
IN THE GROUND

In addition to heat transfer in the ground by
conduction, the contribution due to convection can
be significant under certain conditions. This 1is
particularly true of liquids [10]. However, for a
porous medium such as the ground. the effect of
convection would be significantly reduced. There are
two important aspects with regard to the effect of
convection in 4 porous medium:

1. Criteria for the onset of convection.

2. Determination of correction factors that would
account for the effect of convection in the
conduction-model.

Chan ¢t al. [11] have considered the problem of
natural convection in an enclosed porous media with
rectangular boundaries. Through the incorporation
of the so called “enhanced thermal conductivity”,
(K¥), they include the effect of convection in the
heat-conduction model, and a general relationship is
proposed as follows:

Kt Y(Da, Ra,T)
—— = 1, Ra,
X ¢

1

(27)

where K¥ and K, are enhanced and conventional
thermal conductivities, respectively: “Da” is the
Darcy number and “Ra” is the Rayleigh number. I’
is the shape-parameter dependent on the geometry
of the porous enclosure. Further, Da=K,/I?
where K, = permeability of the ground; [ = characteris-
tic length: and Ra=(T,—T,)gl®/Tyav. where
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x = thermal diffusivity (ft*/h) and v = kinematic
viscosity (Ib/ft h).

The criterion for the onset of convection currents
in a porous medium is obtained by the de-
termination of the breakdown of stability of a layer
of fluid subject to a temperature gradient [12].

For specific configurations such as buried pipe
ete., the effect of convection is complex. However,
approximations using solutions for simple bound-
aries of the porous enclosure [I11] would give a
reasonable estimate of the convective effects. From a
practical point of view, the design of structures based
on the conduction model without convective effects,
would be conservative. The effect of natural con-
vection is to underestimate the flow of heat along
PQ (see Fig. 1) for the thawing problem.

CONCLUSION

The quasisteady analysis is applied to several
useful geometries of heated and chilled structures in
order to determine the movement with respect to
time of the interface between the unfrozen and frozen
regions below the ground surface.

For specific geometries such as buried pipe, strip
footing and tanks with circular base, closed form
solutions are obtained. when the ground temperature
approaches the phasc change temperature. When the
ground temperature is different from phase change
temperaturc. the solutions are obtained using
numerical integration. Some results are compared
with known closed form solutions and the com-
parison is encouraging. The results presented in this
paper have numerous applications in the design of
structures in the colder regions of the world.

The quasisteady method can be applied to cases
where the steady state temperature profiles in the
ground below heated or chilled structures for other
geometries are known. Further work to include the
effect of convection for the specific geometries of
heating or cooling surfaces in the porous ground
would be useful.
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APPROCHE EN REGIME QUASI STATIQUE POUR L’ANALYSE THERMIQUE DE
STRUCTURES ISOLEES

Résumé -~ La méthode quasi statique d’analyse a été utilisée pour déterminer la profondeur de gel ou de
dégel au dessous d'une structure chauffée ou refroidie. La méthode est appliquée a4 des conduites
circulaiies enterrées, a des bandes infinies et des disques circulaires. Pour le cas ou la température du sol
est differente de la température de changement de phase, la solution est obtenue par lintégration
numérique. Dans le cas ol la température du sol approche la température de changement de phase, on

obtient des solutions analytiques.

Les résultats présentés peuvent trouver une utilisation dans les projets d’ingéniérie pour les régions
froides de la terre.

QUASISTATIONARES VORGEHEN BEI DER THERMISCHEN BERECHNUNG ISOLIERTER
STRUKTUREN

Zusammenfassung-—Das quasistationire Rechenverfahren wurde verwendet, um die Tau- oder Frosttiefe
unter geheizten oder gekiihlten isolierten Strukturen zu bestimmen. Insbesondere wird die Methode auf
vergrabene Kreisrohre, unendliche Streifen und kreisférmige Platten angewendet. Im Falle, daB} sich die
Bodentemperatur von der Phasendnderungstemperatur unterscheidet, wird die Losung durch numerische
Integration gewonnen. Fiir den Fall, daB die Bodentemperatur sich der Phaseninderungstemperatur
nithert. werden geschlossene Losungen erhalten. Die in dieser Arbeit vorgelegten Ergebnisse sollten
Anwendung beim bautechnischen Entwurf von Strukturen in den kilteren Regionen der Erde finden.
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KBA3UCTALMOHAPHbBIA METO/1 PACUETA TEIUJIOBbIX XAPAKTEPUCTUK
U30JIMPOBAHHbBIX CTPOUTEJIbHBIX SJIEMEHTOB

AnnoTauna — Mcnoib3yeTcs KBa3HCTaUMOHAPHbBIHA METOA onpeesieHus ryOHHBl OTTAMBAHHA WK NPo-

MEP3aHHA HUXE HAIPEBAEMOrO MM OXJIAXAAEMOTO M30.UPOBAHHOTO CTPOMTENLHOIO J.1eMeHTa. JTOT

METO/, B HACTHOCTH. TPUMEHNETCA K 3ariybsieHHbIM KpyribiM TpyOam, OecKOHEUHBIM M10.10CaM U

KpyriibiM auckam. TIpH OTiaM4MM TeMnepaTypbi OCHOBAHHS OT TeMriepaTypbi (a30BOro mnepexona

PEUIEHHE MOYY4ETCH MUCIEHHBIM HHTerpupoBaHueM. [Ipn OIM30CTH JTHX TemnepaTyp pelueHue

Noay4aeTcs B 3aMKHYTOH dopme. PedyabTaThl aHaIM3a MOIYT HAWTH NPHUMEHEHHE B HHXKEHEDHBIX
pacu€Tax KOHCTPYKLHHA, 1peIHa3HAYEHHBIX 118 XOI0IHBIX PAHOHOB 3€MHOTO 1IIAPA.



