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Abstract--The quasisteady method of analysis has been utilized to determine the thaw or frost depth 
below heated or chilled insulated structures. Specifically, the method is applied to buried circular pipes, 
infinite strips and circular discs. For the case when the ground temperature is different from the phase 
change temperature, the solution is obtained by numerical integration of a quadrature. For the case when 
the ground temperature approaches the phase change temperature closed form solutions are obtained. 
The results presented in this paper should find use in the engineering design of structures in the colder 

regions of the world 

NOMENCLATURE 

.w,)‘,z, the rectangular coordinate system ; 
xo,.Y,,=,~ variables defining moving 

boundary ; 
t. time : 

P,F,Q, points on axis (x > 0,~ = z = 0); 

temperature (thawed zone); 
temperature (frozen zone); 
temperature (heated or chilled surface); 
temperature (insulation surface); 
initial ground temperature; 

phase change temperature; 
surface of the heated areas ; 
surface of the outside of the insulation; 
moving surface separating the thawed and 
frozen zone ; 
volumetric heat capacity (thawed zone) : 
volumetric heat capacity (frozen zone); 
thermal conductivity (thawed zone); 
enhanced thermal conductivity (including 
convection) ; 
thermal conductivity (frozen zone); 
permeability of the ground ; 
latent heat (volumetric) of thawed zone; 
outward normal; 
characteristic length of the porous 
enclosure ; 
depth evaluated at point P; 
depth evaluated at point Q ; 
depth ratio ; 
X evaluated at P; 
X evaluated at Q ; 
radius of thaw or frost for a pipe buried in 
an infinite region ; 
temperature distribution function; 
derivative of F( ) with respect to [ ; 

Ste, 

Da, 

RU, 

h 0, 
s, 

r 03 

f-7, 

9, 

C,CG- To) 
Stefan’s number, -,-~- ; 

Darcy number. !$ ; 

(7;,- TM3 
Rayleigh number, ~-~-- 

T,sc\~ ’ 
depth of burial of circular pipe ; 
thickness of insulation ; 
radius of buried pipe or of circular tank ; 
half width of strip; 

acceleration due to gravity ; 
C( ), a known function defining relationship 

between T, and Tp; 

1,,12,1,, time factors for buried pipe, 
strip and circular tank, respectively. 

Greek symbols 

dummy variable for X ; 
Laplacian ; 
ratio of thermal conductivity of insulation 
to thermal conductivity of thawed soil; 
ratio of depth of burial of pipe to its radius; 
insulation thickness ratio (buried circular 

pipe); 
insulation thickness ratio (infinite strip): 
insulation thickness ratio (circular base); 
thermal diffusivity ; 
kinematic viscosity; 
infinitesimal quantity; 
a functional relationship. 

INTRODUCTION 

THE STUDY of the thermal regime 
heated or chilled structures, is 
importance in the colder regions 

111 

in the ground, of 
of considerable 

of the world. In 



INSULATION 

FIG I. The generalized two phase configuration 

such areas, the prediction of the extent of thawing or 
freezing induced by heated or chilled structures is 
relevant in engineering design and logistics. Specih- 
tally, the effects resulting from the erection of 

buildings ; stripping of surface vegetation ; con- 
struction of tank farms, buried water and sewer 
pipes, oil and gas pipelines, are of prime importance. 

Engineering designs are usually related to the 
determination of insulation requirement and em- 
placement of backfills as measures to minimize either 

thaw settlement or frost heave. 
The work of Lachenbruch is relevant with respect 

to the study of the thermal regime below heated 
buildings [l] and around buried warm pipeline in 
permafrost [2]. Significant progress in numerical 
modelling of the thermal regime of buried pipes 
using finite element or variational methods have 

been made to date [3,4]. However, such procedures 
are usually warranted only when the thermal 
configuration is complex. For preliminary engineer- 
ing designs approximate methods for predicting the 
thermal regime may be effectively utilized. One such 
approximate method is the so called “quasisteady 
method” which is generally valid for cases where the 
latent heat of fusion is very large compared with the 
heat capacities [5]. Carslaw and Jaeger [6] have 
derived an approximate closed form quasisteady 
solution for thawing and freezing around a cylinder 
in an infinite domain. The same technique is used by 
Porkhayev [7] for estimating thaw depths below 
heated foundations. A good discussion relating to 
the quasisteady technique is given by Tsytovich 181. 

In this paper, the quasisteady method has been 
applied to the problem of thawing or freezing below 
heated or chilled insulated structures, respectively. 
Also, some new closed form solutions for some 

practically useful geometries have been derived. 
These results should be of direct use in the 
engineering designs of the Arctic, Sub-Arctic and 
other colder regions of the world. 

THE QLASISTEADY APPROACH 

When moist ground thaws or freezes, a substantial 
portion of the heat is exchanged in effecting a phase 
change of the moisture in the ground. For soils with 
sufficient water content, the interface between the 
frozen and unfrozen zones usually moves very 

slowly. Consequently. the thermal regime at any 
given instant can be regarded as nearly steady. Thus. 
the transient nature of the process may be regarded 

as a continuous transition from one steady state to 
another [6 ~81. 

The main requirement for the application of the 
quasisteady method of analysis are: 

(a) The interface between the thawed and frozen 
zones of the moist ground is an isothermal surface of 
a steady temperature held. 

(b) In the thawed and frozen zones. the tempera- 
ture fields are described by the equations of steady 
state temperature field with the zone interface 
unsteady. 

In this paper, the problem of thawing of frozen 
ground due to a heated structure is discussed. 
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However, the results are applicable to the converse 
problem. With reference to Fig. 1, S,, is the surface 

on which a temperature is prescribed, corresponding 
to the boundary of the heated or chilled structure. 
S,, is the surface of the thermal insulation and S, is 
the isothermal moving surface representing the 
moving interface between the thawed and frozen 
zones. P is the zone occupied by the thermal 
insulation. V, is the thawed zone and V, is the frozen 

zone of the half-space. 
The formal problem of thawing or freezing of the 

half-space based on heat conduction can be stated as 
follows: 

The subscripts 1 and 2 refer to the thawed and 

frozen states, respectively. The temperature at a 

point M(x,x,~) (see Fig. 1) at a given time t(t > 0) is 
denoted by T(x.r. 2; t). 

(a) For the thawed zone, 

For the frozen zone, 

where 

(1) 

C, and C, are the volumetric heat capacities and 

K, and K, are the thermal conductivities in the 
thawed and frozen zones, respectively. 

(b) Initial condition 

r,(.X..t’.Z; t = 0) = T, (3) 

TG is the initially uniform ground temperature. 

(c) Fixed boundary conditions 

T2(s = O,y,z; t) = TG (4) 

at the ground surface 

T,(s,~.,z;t) = 7;j (5) 

on the surface S, 

(d) Moving boundary conditions (Cauchy con- 
ditions) 

T,(.u,,~,,,-,;t)= T,(x-,,4’,,,zo;f)= T,. (6) 

Points x0, !to, z. locate the isothermal moving 
surface S, corresponding to the phase change 

temperature To. 
Also, on the moving surface S,, 

0) 

where r#r&,y o,~O) = 0, locates the isothermal mov- 
ing surface, II is the outward normal on a given point 
on S,, and d$/dt is evaluated along the normal. L, is 
the volumetric latent heat. 

The temperature at a given point on the surface $, 

is related to the fixed temperature T, prescribed on 
S,, viz. Tp = G(T,) where G( ) is a known function. 

This relationship can be established by equating the 

heat flow through the insulation to the heat flow into 
the thawed ground at the given point. 

The “quasisteady assumption” requires that the 
moving boundary progresses v’ery slowly as com- 

pared to the heat-conduction process in the thawed 
and frozen zones. This approximation is valid when 
the latent heat of the ground is large. viz. for a 

ground with considerable moisture. It is then 
reasonable to expect the approximation to be 
valid for situations when the Stefan’s number. 

C, (T,- T,)/L,, is small (Stefan’s number. Ste, is the 

ratio of the sensible heat to the latent heat). 

Since steady state conditions can be assumed in 
the thawed or frozen zones in a ground when Stc << I 
the temperature distribution in the thawed zone can 

be expressed as 

T,(.~.!..;)=Al+B,F(.~,!,.r). Ma) 

Jsing potential theory [1,6], the distribution for 
steady state thermal conditions, F(.Y.J’. I). can be 
determined for heat conduction in a homogeneous 
half space, for several configurations of the surface 

s,. 
Using the boundary conditions. equations (5) and 

(6), the constants A, and B, can be evaluated. 

Consequently. 

T,(X,J.Z)- To F(x, J’, 2) - NY”. J’“. q,) 

T,,-T” 1 - F(.Y,,.Y”.Z”) 
(8b) 

Also, by definition F(S,) = 1. 
Similarly, the temperature distribution in the 

frozen region can be written as 

T,(x,j,,-_) = A2+Bzl;(.~.y.z) (94 

where A, and B, are constants. 

Using boundary conditions (6) and the condition 
F(x + E, J’ -+ cc, ; ---t X) = 0, the temperature dis- 
tribution can be written as: 

(9b) 

In many design problems the maximum extent of 
thaw or frost depth is required. For the specific 
geometries considered in this paper, it is assumed 

that the maximum thaw or frost occurs along the 
plane or axis of symmetry of the temperature field. It 

must be understood, however, that equation (7a) can 
be specialized for any direction. With reference to 
Fig. 1, simplification of the equation (9b) along the 
plane of symmetry (x > 0,~ = 0,:) or along the axis 
of symmetry (x > 0, 4’ = 2 = 0). i.e. for two and three 
dimensional problems, respectively. gives 
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where 

K. Sbstiht)tu and A. 

and 

(9C) 

It is also assumed that the insulation thickness is 
small compared to a characteristic length and 
uniform around or along the heating surface, so that 
within the insulation steady state conditions apply. 

Integrating equation (7b) with the aid of equations 
(8~) and (SC), the following expression can be 

obtained. 

and r0 is a characteristic length. 
X, and X, can be interpreted to mean X at point 

p and X at point Q, respectively. When the ground 

temperature q, approaches T, such that T,; - To = T 

(infinitesimal quantity), F(i) can be still defined for 
the boundary valve problem for steady state con- 
ditions. However, if q, = To, the boundary (u = 0, 

J’.z) has no effect on the temperature distribution in 
the thawed zone. 

When the ground temperature approaches r,, 
y(T,)-tO and equation (10) simplifies to: 

Kt(T,-T,)r 
7 

ry,L, 

In this paper, equation (11) has been integrated to 
give closed-form solutions for some practically useful 
geometries. while equation (10) is evaluated by a 
numerical integration provided F(c) is known. For 

the case when T,; ~ Tt, approaches F, 

leading to equation (I 1). Also, if TC; = T,, the shape 
function F(i) may have to be redefined. since the 
ground surface has no influence on the thaw bulb. 

ASSUMPTIONS AND LIMITATIONS 
OF THE QUASISTEADY APPROACH 

The prediction of the extent of thawing or freezing 
beneath heated or chilled structures is usually 
required in soils with moderate to high moisture 
content. Soils with low moisture content do not pose 
problems either with respect to thaw settlement or 
frost heave. It is therefore reasonable to obtain 

solutions for the situations when the Stcfan nttmbcl-. 
Stt,. is very small (cc I ). The thaw-front would move 
slowly. and the transient problem can bc regarded LIS 

:I smooth transition from one steady state 10 the 
next. 

With regard to the use of the shape-factors 
F(s. J’, Z) in the quasisteady formulation there arc 
two distinct considerations. Firstly when ‘<, # 7;,, 
there is a flow of heat in the frozen /one, i.e. the 

surface (s = 0. J’.z) influences the temperature field 
in the frozen zone and hence the shape of the thaw- 

front. This is valid even when ‘I;, - ‘&, is an 

infinitesitnal quantity. E. However, when 7;, is ehactlq 

equal to 7;,, there is no heat flow in the fro/en done 
and the shape of the thaw-front is determined by the 
surface S,. This exception in assummg F(.Y,!-, ;) 
should be considered for every geometry of the 

surface, St. 
Other assumptions that have been made in the 

formulation of the quasisteady approach arc as 
follows: 

(a) The thickness of insulation is assumed IO be 
small relative to the characteristic length in the 
problem, so that almost steady state conditions 
inside the insulation exist. 

(b) The average surface temperature is equal to 
the average ground temperature. 

(c) The temperature field F‘(.Y,J,.z) is assumed to 
have an axis of symmetry (.Y > 0. J’ = : = 0) for three 
dimensional problems. or a plant of symmetry 

(.u > 0, J = 0, Z) for two dimensional problems. 
(d) The geothermal gradient is defined as the 

change in the temperature of the earth with depth 
and is usually expressed in degrees per unit depth. 

The geothermal heat flux. which is effectively the 
product of the geothermal gradient and the corre- 

sponding thermal conductivity, provides the basal 
boundary condition for the thermal calculations 

related to the ground temperature regime. especially 
in thermally sensitive regions of the world such as 
discontinuous and continuous permafrost areas. In 
the present paper. the geothermal heat tlux is 
neglected. 

TWO DIMENSIONAl. .4NALYSIS 

Burirrl circular pipe 

A circular pipe of radius r, is buried at a depth of 
II,, below the ground surface. Ifs is the thickness of 
insulation around the pipe, the external radius of the 
insulated pipe is r0 = r, +.\. 

With reference to Fig. 2(a). the steady state 
temperature distribution can be expressed by the 
Forchheimer equation. [7]. 
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TP = PiPE TEMPERATURE 

Ts = SURFACE TEMPERATURE 

TG - GROUND TEMPERATURE 

FIG. 2. Configuration for buried pipe, infinite strip and cylindrical vessels. 

GROUND SURFACE 

7 1 

/ 2 3 5 IO 

TIME FACTOR, I, 

@ CARSLAW 8 JAEGER SOLN. 
(EQN. IS 1 

0 IO00 

FIG. 3. Depth ratio vs time factor I, (buried insulated pipe). 

For the plane of symmetry (s; y = 0, z), the equation where 
simplifies to 

ho 
In ;+(/2- l)“2 

&“; 
YO 

@*=$-; &,?I_; 
1 r0 I’ = lb ; ___-- 

T(s. .v = 0) = Tp . 
;- ($ - 1)‘!2 

__I_ __- = 
In [k~ + ($ - 1 )‘!“I 

&Jy) (13) f and K, are the thermal conductivities of the 
insulation and thawed ground, respectively. For the 



116 R. SWIADRI and A. V. G. KRISHNAYY.~ 

specific case then TG = T,, the temperature distri- Diameter of the pipe is l.Oh7m (42 in): thickness 
bution would be concentric about the pipe centre of styrofoam insulation is 5.08 x IO-’ m (2 in); depth 
since the ground surf&e has no influence on the of burial of pipe is l.GOm (5.25ft); tcm~ratLlrc of 
thaw-front. When the thaw-front touches the ground chilled gas is -9.44 f f 15 F-1; nverage ground 
surface, the solution becomes invalid. temperature O‘C (32 F) for case I and 0.56 C (33 F) 

However, for 7;; i: q, the shape factor F(i), for case 2: thermal conductivity of insulation is 
equatibn (13). can be assumed in the analysis. 2.94 x 10“ W!m“K (0.017Btuih F): thermal con- 

By equating the heat ffux per unit area going ductivities for a frozen and unfrozen ground and 
through the insrilation to that going into rhe thawed 2.16W;lm ‘K ~1.~5~tu~hft F) and l.56Wim K 
zone at the point r7, (0.90 Btufh ft F), respectively. The latent heat for wet 

ground, L,, is 2.22 x fO*J/m” (59S0.0Btu;ft3). When 
the pipe is buried at large depths. the influence of the 

(14) ground surface is negligible and the isotherms would 

Where 
be circular and symmetric about the pipe axis. For 

- 7(/{2 - 1 )f 3 the pipe with insulati~)n 
F’(X,,) = ~_ -~ .“l . .__~ _._ ;_. __ __” ___. 

;(;ptL-_iF+Ij ln~~l+(~r-fj’~2”j 
ifSa) 

i: p = ’ p-+1. (15b) 
The quadrature for the condition 7;; cc: & can be 
obtained by using equations (13). (14) and (to): 

in X$_f‘f?- 1)‘;2 

x-(p”-- 1)“2 
_ -..._-__ iX2-~‘-l)ln[~+(y~--l)l’ldX 
~n[~i+(p2_ 1 ,l!‘] . -----~~py)1’2 

. __~.^ .---_. ..~--_.---. ._.__.._ __..___. 

_ ‘“c~-t-!!~~ .I 9’ “1 

. 
(16) 

When the ground temperature T, -+ To equation (16) can be integrated in closed form to give: 

can be defined as “insuiation &ectiveness ratio” and 

J, 
K1(T,,-T,)t 3= .----,z L--.. . . 

0 I 
is the time factor. 

The results equations ( I6f and [ 17) have use in the 
design of buried water, sewer, oil and gas pipes. 

The progress of the frost front with time is plotted 
in Fig. 3, for a buried pipe with the following data: 

When there is no insulation on the pipe, the result 
is given by Carslaw and Jaeger [6], viz. 

A comparison between results (17) and (1Xb) is 
plotted in Fig. 3. 

Consider an infinitely long strip of width 2~. 
Below the strip is an insulation of thickness t. With 
reference to Fig. 2, the steady state temperature 
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TIME FACTOR, It 

FIG. 4. Depth ratio vs time factor I, (infinite strip) 

distribution for a half space in this case is given by 

T(x,y) = 3 arctan aSJ’+ arctan a-y (19a) 
7l ( x X > 

= -z F(x, 4’). 
7-l 

(19b) 

Defining 

;=Y, +-5, o,+ 
a a 1 

the temperature distribution for the plane of sym- 

metry (-u, y = 0, 2) is 

2T, 
T(i) = - arctan t . 

0 7l 
v-0) 

The heat flux balance at a point such as P is given by 

Tp- T, = I+!L-. F’@P) 

T,(X)- To 0, F(X)- 1 
(21) 

The solution for 4 -+ 0, viz. T, -+ To, 

K,(T,-T,)t 

-?I-qn l 
6 3 (1 +x;)“2 

-+ln(l +X5). (22) 

For TG < To the quadrature becomes 

K1(TP-TO)t n ‘, 

s 
l+ 

6,/O,. F’(Xp)- 
=- 

a2L, 2 0 F(X) - 1 I 

Consider as an example a strip of half-width equal 

to 3.05 m (10 ft) which is at a temperature of 15.55-C 
(60°F). The bottom of the strip is insulated with 
Styrofoam (K = 2.94 x 10m2 W/mK or 0.017 

Btu/h ft ‘F). The ground has the following thermal 
properties: K,=1.56W/mK (0.900 Btu/h ft ‘F), 

K2=2.16W/mK (1,250 Btu/h ft ‘F), L, = 
1.34 x 10’ J/m3 (3,600Btu/ft3). The rate of thaw 
is plotted in Figs. 4 and 5 for different insulation 
thicknesses and ground temperatures. Figure 5 is a 
plot of the depth ratio X against the time factor 

for different values of i, = b,/B, An increase in A1 
indicates either an increase in insulation thickness of 
a decrease in insulation thermal conductivity. i., is 
the “insulation effectiveness ratio” for this case. 

Equations (22) and (23) can be applied to designs 
pertaining to strip footings or long rectangular areas. 
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h,.o, 16 .-2.22’C 
STEADY STATE 

STEADY STATE 
_------- 

L I I / Illlli DO 
2 3 5 ID 100 1000 

TIME FACTOR, I, 

F-I<;. 5. Depth ratio vs time factor (infinite strip). 

THREE DIMENSIONAL ANALYSIS 

TUI& ,virh a ci~cdur hmr 

Consider a tank with a circular bottom with a 

radius, I’~. and with an insulation of thickness r and 

thermal conductivity K. 

The expression for steady state temperature along 
the centerline can be written as [I]. 

Equating heat Rux at a point such as P. 

Equations (24). (25) and (10) can be combined to 
give the quadrature for T,; < T,, as in earlier cases. 

For the case when T(, --+ 0, the closed form result 
can be written as : 

++(Xa(Xi+ I )’ ‘+ln(X,+[Xi+ l]1:2)i]. (26) 

The analysis presented in this section has use in the 
design of tank pads. For a circular tank of radius 
loft and the same thermal data as for the previous 
cases, the results are plotted in Figs. 6 and 7. 

CONVECTIVE HEAT ‘TRANSFER 
IN THE GROUND 

In addition to heat transfer in the ground by 
conduction. the contribution due to convection can 
be significant under certain conditions. This is 

particularly true of liquids [IO]. However. for a 
porous medium such as the ground, the effect of 
convection would be significantly reduced. There are 

two important aspects with regard to the effect of 
convection in a porous medium: 

I. Criteria for the onset of convection. 
2. Determination of correction factors that would 

account for the effect of convection in the 
conduction-model. 

Chan CT u/. [I 11 have considered the problem of 
natural convection in an enclosed porous media with 
rectangular boundaries. Through the incorporation 
of the so called “enhanced thermal conductivity”. 
(KT), they include the effect of convection in the 
heat-conduction model, and a general relationship is 
proposed as follows: 

where K: and K, arc enhanced and conventional 
thermal conductivities. respectively; “Du” is the 
Darcy number and “Ru” is the Rayleigh number. f 
is the shape-parameter dependent on the geometry 
of the porous enclosure. Further, Du =K,,//‘, 

where K, = permeability of the ground; I = characteris- _ 
tic length; and Rtr = (r,, - T,,)g/“!T,,av. where 
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FIG. 6. Depth ratio vs time factor (circular area). 
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FIG. 7. Depth ratio vs time factor I, (circular area, different A, TO), 
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x = thermal diffusivity (ft’!h) and 1’ = kinematic 
viscosity (Ib/ft h). 

The criterion for the onset of convection currents 
in a porous medium is obtained by the de- 
termination or the breakdown of stability of a layer 

of fluid subject to a temperature gradient [ 121. 
For specific c~~nfigur~~tions such as buried pipe 

etc., the eKcct of convection is complex. However, 
approximations using solutions for simple bound- 

aries of the porous enclosure [I I] would give a 
reasonable estimate of the convective effects. From a 

practical point of view. the design of structures based 

on the conduction model without convective effects. 
would be conservative. The effect of natural con- 
vection is to underestimate the flow of heat along 
PQ (see Fig. 1) for the thawing problem. 

CONtLl’SWN 

The quasisteady analysis is applied to several 

useful geometries of heated and chilled structures in 
order to determine the movement with respect to 
time of the interface between the unfrozen and frozen 

regions below the ground surface. 
For specific geometries such as buried pipe. strip 

footing and tanks with circular base. closed form 

solutions are obtained, when the ground temperature 
approaches the phase change temperature. When the 
ground temporaturc is different from phase change 
temperature. the solutions are obtained using 

numerical integration. Some results are compared 
with known closed form solutions and the com- 
parison is encouraging. The results presented in this 

paper have numerous applications in the design of 
structures in the colder regions of the world. 

The quasisteady method can be applied to cases 
where the ste;xiy state temperature profiles in the 

ground below heated or chilled structures for other 
geometries are known. Further work to include the 
effect of convection for the specific geometries of 
heating or cooling surfaces in the porous ground 

would be useful. 
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APPROC‘HE EN REGIME QUASI STATIQIJE POUR L’ANALYSE THERMIQUE DE 
STRUCTURES ISOLEES 

R&sum& La mithode quasi statique d’analyse a Pt6 utilisie pour determiner la profondeur de &el ou de 
digel au dessous d’une structure chauffie ou refroidie. La mbthode est appliquie d des conduites 
circulailes enterrtes. <I des bandes infinies et des disques circulaires. Pour le cas oti la tempkrature du sol 
est diffkrente de la tempkrature de changement de phase, la solution est obtenue par I’intCgration 
numerique. Dans le cas oli la tempkrature du sol approche la temperature de changement de phase. on 
obtienr des solulions analytiques. 

Lcs r&ultats present& peuvcnt trouver une utilisation dans ies projets d’ingknikrie pour les r&?ions 
froides de la terre. 

QUASISTATIONARES VORGEHEN BE1 DER THERMISCHEN BERECHNUNG ISOLIERTER 
STRUKTUREN 

~~sanlme~fassu~g~ DZ quasistationlre Rechenv~~ahren wurde verwendet, urn die Tau- oder Frosttiefe 

unter gehcizten oder gekiihiten isolierten Strukturen zu bestimmen. Insbesondere wird die Methode auf 
vergrabene Kreisrohre. unendliche Strcifen und kreisfirmige Platten angewendet. Im Falle. da8 sich die 
Bodentemperatur von der Phasenanderungstemperatur unterscheicfet, wird die LGsung durch numerrsche 
Integration gcwonnen. Fiir den Fall, da13 die Bodentemperatur sich der Phasentinderungstemperatur 
niihert. wcrden geschlossene LGsungen erhalten. Die in dieser Arbeit vorgelegten Ergebnisse sollten 

.4nwe11J11ng beim bautechnischen Entwurf von Strukturen in den kilteren Regionen der Erde finden. 



Thermal analysis of insulated structures 

KBA3MCTAUMOHAPHblti METOA PACYETA TEflJlOBblX XAPAKTEPMCTMK 
M30JlMPOBAHHblX CTPOMTEJIbHblX 3JlEMEHTOB 

.hHoTaunR ~~ kiCnOJtb3j'eTCtt KBa3t,CTaUHOHapHblti MeTOL,On~ileJteHWt ~JtY6HHblOTTiiHBBttHII M.111 npO- 

Mep3aHm Httxe HarpesaeMoro HJIW ox_TawlaeMoro kisoaepoeanHor0 cTpoeTenbsor0 3.wsz~ ra. 3ro-r 
MeTO,?.. B 'laCTHOCTM. npt+MeHReTCfl K 3ar_7y6JteHHblM KpYrZbtM Tpy6aM. 6CCKOHeVHblM nO;tOCaM M 

KpYr>-tblM ,!IMCKBM. nprl OTJtW'tHA RMnepaTypbt OCHOBaHHIl OT RMnepaTypbl (t)a3OBOrO nepexom 

pemenne nonyqaeTcn wicnennbw4 nwerpepoeawek4. flp~ G.THS~CTW 3~ki~ TeMnepaTyp pemesae 
nOJlyqaeTCfl B 3aMKHYTOti $,OpMe. Pe3y.lbTaTbt a"aJH?d MOrYT HakTH npAMeHe"He B MHXWtepHblX 

pdC't&X KOtICTpYKUHi?. UpeitHa3Ha'4etlHbtX .VtR XO'lOitHbIX patiOHOB 3eMHOrO ,,ttIpd 
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